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In  the design of dielectrophoretic liquid orientation and expulsion systems for 
zero-gravity environments, maximum electromechanical effect of an imposed 
electric field is obtained by concentrating the field gradients in the neighbourhood 
of liquid interfaces. In  typical configurations, the electric field gradient plays the 
role of an electromechanical wall, with a stiffness and inertia represented dy- 
namically by electrohydrodynamic surface waves. As an orientation system 
rotates, the liquid motions are characterized by these waves as they couple to 
inertial bulk oscillations and centrifugal surface waves resulting from the rotation. 
A study is made of configurations typified by an equilibrium in which a circular 
cylindrical column of inviscid liquid undergoes rigid body rotation. The equili- 
brium is made possible, even though the cylindrical interface is bounded from 
outside only by its vapour, because the interface is stressed by an essentially 
tangential axial electric field intensity, with a strong gradient in the radial direc- 
tion. Dispersion equations are developed for the electrohydrodynamic centrifugal 
waves of small amplitude. Conditions for incipience of instability and the fre- 
quencies of normal modes of oscillation are given. Experimental observations, 
which demonstrate the destabilizing influence of the rotation and the effect of 
rotation and electric field intensity on the normal mode frequencies, are in satis- 
factory agreement with the theory. 

1. Introduction 
Background ; electrohydrodynamics 

The electrohydrodynamics of perfectly insulating polarized liquids has received 
considerable attention because of its possibilities for solving problems of cryo- 
genic fluid management in the weightless environments of space. The electric 
field is used to replace the influence of gravity through the agent of the Korteweg- 
Helmholtz force density (Stratton 1941, p. 145). 

F = -4E.EV6, (1) 
where E and 8 are the electric field intensity and permittivity, respectively. This 
is the ‘ dieleetrophoretic’ force density that remains in a classical liquid if there 
is no space charge, and if only the incompressible dynamics are of interest, so that 
the electrostriction force density makes no observable contribution (Melcher 
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1963, p. 23). In  systems of homogeneous fluids, (1) makes it clear that electro- 
mechanical coupling is limited to interfaces, where e suffers an abrupt discontinu- 
ity. Hence, in the case in which E is tangential to an interface between a liquid 
and its vapour, there is a surface force density normal to the interface from liquid 
to vapour, given by 

T, = 3E2 (6 - eo), 

where eo is the permittivity of free space. 

fundamental role in dielectrophoretic fluid mechanics. 
Thus it is that the dynamics of electrohydrodynamic surface waves play a 

FIGURE 1. Representative static dielectrophoretic equilibria. In  (a)  and ( b ) ,  perturbations 
are of a purely self-field type. In  (c)-( f ) ,  imposed and self-field effects are present; in (c), 
self-field effects are destabilizing and in (d)-(f) they are stabilizing. Cases ( e )  and (f) are 
likely to be dominated by imposed-field effects because the field gradients are concentrated 
in the neighbourhood of the interfaces. 

Some fluid field configurations that have been studied and that will help to 
place the present work in perspective are shown in figure 1. As the interface 
departs from one of the equilibria shown, it is subject to perturbation electrical 
surface force densities of two types: (i) ‘imposed field ’ perturbations caused by the 
interface moving through a non-uniform imposed electric field, and (ii) ‘self- 
field ’ perturbations created because deformations of the dielectric lead to changes 
in the electric field intensity at  the interface which, in turn, alter the electrical 
surface force density. 

In  configuration (a )  of figure 1, the equilibrium consists of a plane interface 
stressed by a uniform electric field intensity having components normal and 
tangential to the interface. Because the imposed field is uniform, the electro- 
hydrodynamics are due entirely to self-field effects. It is well known that the 
perpendicular field tends to produce instability, while the tangential field 
stiffens the interface for perturbations propagating along the field lines but 
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has no influence on those propagating across the field lines (Melcher 1963, chap- 
ters 3 and 4). To be certain of observing these dielectrophoretic effects, it  is 
necessary to use ac fields with frequencies much greater than the reciprocal 
relaxation time for free charges in the liquid (Melcher & Schwartz 1968; 
Devitt & Melcher 1965). 

Because the imposed field is uniform, perturbations from the circular cylin- 
drical static equilibrium of figure 1 ( b )  have the same self-field characteristics as 
the plane interface in a tangential field. Perturbations independent of the 
axial direction are unaffected by E,, while those propagating in the axial direction 
are stiffened (Nayyer & Murty 1960). 

By contrast, if coaxial electrodes are used to impose a radial field on a circular 
cylindrical equilibrium, both self-field and imposed field effects are present. The 
self-field effects, as in the case of the plane interface in a perpendicular field, 
tend to produce instability; the imposed field effects, however, are stabilizing, 
because the imposed field (hence the radially directed surface force density) 
decays with radial distance. Thus, in configuration (c )  of figure 1, a modest electric 
field tends t o  make the equilibrium shown stable, but a large electric field pro- 
duces instability (Reynolds 1965). 

Because of the inherent tendency toward self-field-induced instability caused 
by a normal electric field intensity, dielectrophoretic liquid orientation and 
expulsion systems are designed to take advantage of fields imposed tangential 
to the interface. However, because there is no self-field interaction between the 
field and those perturbations with hills and valleys parallel to the lines of electric 
field intensity, it is necessary to engineer appropriate gradients in the imposed 
fields for purposes of stabilization. 

The essence of a field-gradient-stabilized system is shown in figure 1 (d). The 
field experienced by the interface decreases as a portion of the liquid falls. Thus, 
the tendency is for the equilibrium shown to be retained because there is an 
attendant decrease in the downward-directed surface force density (equation (2)). 
Note that the dielectrophoretic surface force density does not ‘hold ’ the liquid in 
place, but rather that the system is arranged so that hydrostatic pressure main- 
tains the static equilibrium. The electric field serves only to stabilize the equili- 
brium (Melcher & Hurwitz 1967). 

In configuration (e) of figure 1, the field gradient stabilization is carried to the 
extreme by concentrating it in the neighbourhood of the interface. The field 
gradient is at once confined within a distance from the electrode edges on the 
order of the plate spacing, s, and for a given E, made inversely proportional to s. 
Thus, at the expense of confining the region of interaction, it is possible to make 
s sufficiently small that the imposed-field effects dominate those due to the self- 
fields. Moreover, this type of arrangement makes it possible to carry out liquid 
vapour experiments dominated by electrohydrodynamic forces even in static, 
earth-bound tests (Melcher, Guttman & Hurwitz 1968). 

Concentrated field configurations are the basis not only for the achievement 
of stable static equilibria, but also for slosh control (Melcher, Guttman & Hur- 
witz 1968) and flow confinement (Melcher, Hurwitz, Fax & Blutt 1968). This 
latter case is sketched as (f) of figure 1, where flow is between a ribbon electrode 
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at high potential with respect to a tank wall. Two of the ‘dielectrophoretic pipe ’ 
walls are electromechanical, allowing ingestion of adjacent liquid, but preventing 
its expulsion in any direction except that of flow. The electric field plays the same 
role with respect to these lateral walls as gravity plays in free-surface channel 
flows. Thus, electrohydrodynamic surface waves propagating on the walls of the 
‘pipe’ are important in the same way that gravity waves are essential in free 
channel flows (Rouse 1946, pp. 132-47). If the ribbon-wall spacing (a) is small 
compared to wavelengths of interest, the self-field effects are negligible compared 
to the effects of the imposed concentrated-gradient field. The following sections 
describe an investigation into the nature of similar waves but with the fluid 
assuming a steady, rigid-body equilibrium rotation. 

Previous investigations (Grodzinsky 1967 ; Habip 1967 ; Wong 1966) concerned 
with the electrohydrodynamics of rotating liquids relate to the relatively small 
self-field effects and therefore tend to suffer from a lack of experimental evidence. 

Rotational effects are important to dielectrophoretic liquid management in 
space vehicles subject to controlled or uncontrolled rotations. The results are also 
of interest in making voltage-controlled liquid gyroscopic devices. It is important 
to recognize that dielectrophoretic hydrodynamics is the complete analogue of 
ferrohydrodynamics (Cowley & Rosensweig 1967) and so developments also 
apply to analogous motions of a magnetized liquid. 

Background : rotating JEuids 
As part of literature pertaining to the dynamics of rotating fluids, the following 
sections add yet more examples to the ‘crowds of extremely interesting cases’ 
mentioned by Lord Kelvin in his original paper on the subject (Kelvin 1910, pp. 
152-65; Chandrasekhar 11961). From a basic point of view, these studies relate 
to the manner in which electrohydrodynamic surface waves couple to inertial 
waves with gyration frequency 2i2, in the bulk of the liquid, where f2 is the 
angular velocity of rotation (Chandrasekhar 1961, pp. 85-86). In  view of the Tay- 
lor-Proudman theorem (Chandrasekhar 1961, pp. 83-85, 87) it is not surprising 
that instability manifests itself as overstability. 

In the limit of an extremely large electric field intensity, the ‘dielectrophoretic 
wall’ becomes infinitely stiff and the dynamics of most of the modes reduce to 
the case of a fluid contained within a vessel having rigid walls and rotating at 
constant angular velocity. Because of previous work, the phenomenon under 
study might be referred to as ‘ dielectrophoretic elastoid-inertia oscillations and 
instability’ (Pultz 1959). However, it is the dynamics of a rotating interface that 
is mainIy of concern here, and a more accurate description of the phenomenon 
under investigation is ‘dielectrophoretic-centrifugal waves and instabilities ’ 
(Phillips 1960). As will be seen, it is sometimes difficult to distinguish between 
inertial oscillations and surface-wave modes; they can couple and conspire to 
produce overstability. Recent reviews concerned with rotating fluid systems help 
to place this work in perspective (Bretherton et al. 1966, Lighthill 1966). 
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Equilibrium conjigurations 
Electrodes and oriented liquid are shown in figure 2,  in the two configurations ( A )  
and (B)  to be dealt with. Configuration A ,  the circular electrode over a second 
planar electrode, as shown in figure 2 (a), permits experimental investigation 
even in the face of an axially directed gravitational acceleration, 9. The electrodes 
constrain fluid motions to be perpendicular to the axis of rotation, with the liquid 
assuming an essentially circular cylindrical geometry, filling the region under 

Side view 

Solid electrodes. 

I I 

Liquid ' ' 'u Drain 3 R i  > a  

Side view 

I - L d  

Top view 

End view 

Screen electrodes 

FIGURE 2. (a)  Configuration A :  circular electrode over a plane surface, with the fluid 
filling the cylindrical region between. The fringing fields tend to stabilize the circular inter- 
face, so that the equilibrium is possible even with rotation and gravity acting as shown. 

( b )  Configuration B : a system of circular screen electrodes orient a column of liquid with 
the same equilibrium radius as the electrodes. The screens permit communication of 
fluid between sections. Rotation is about the axis of the cylindrical structure. 

the circular electrode. The interface is in the fringing field region, and hence tends 
to be stable even with electrodes and liquid undergoing rigid body rotation. 

The equilibrium depicted in figure 2(b ) ,  configuration B,  is similar, except 
that there are many electrodes at alternate polarities. The fringing fields in the 
neighbourhood of the interface at  the radius R tend to stabilize the column of 
liquid in spite of the rigid body rotation of the entire system about the axis. The 
electrodes are constructed from screens that permit the communication of liquid 
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between sections. Thus, the motions are modelled by assuming that the screens 
present a negligible resistance to the motions, and serve only to impose a radial 
distribution of electric field intensity gradient concentrated at  the radius, R. 

Except for a geometric constant, the model for configuration A is a special 
case of B, with modes propagating along the axis of rotation ignorable. 

2. Theory of dynamics 
Outline 

Coupling between the electric field and fluid is confined to the interface. There- 
fore, it is convenient to represent the mechanical and electrical bulk dynamics 
in terms of pressure- or stress-displacement relations at  the interface. At the 
outset, surface perturbations are assumed to take the form 

fl(8, z, t )  = Re $expj(wt - m8 - kz). (3) 
The co-ordinates (r,  8, z, t )  are measured from a frame of reference having the 
same angular velocity i2 as the fluid, relative to the laboratory frame. 

In  the following subsections, the fluid pressure as well as electrical and surface 
tension surface force densities are evaluated in terms of $. The dispersion equation 
for waves on the interface and in the bulk follows from the condition that these 
radially directed surface force densities balance. That is, 

(4) 

where n-, T, and T, are the total fluid pressure, and the electric and surface tension 
surface force densities, respectively. With 6 = 0, the equation requires that 

r ( R + [ )  -no+ T,(R+ 6) + T,(R -J- LJ = 0, 

n(R) - T O  + T,(R) + T,(R) = 0. (5) 

Note that because T,  > 0, for a negligible effect of surface tension, the ambient 
pressure no exceeds that in the interior of the fluid. 

In  terms of solutions having the form of (3), the perturbation amplitudes must 
obey the linearized expression remaining when (5) is subtracted from (4) 

++Pe+% = 0, (6) 

where the ( r ,  8, z, t )  dependence is removed by assuming solutions have the form 

Mechanical pressure-displacement relations 
In  terms of the rotating frame co-ordinates, the linearized equations of motion 
for the fluid (with i, a unit vector in the axial direction) are (Chandrasekhar 1961, 

of (3). 

pp. 83-85, 87):  
av p--2vx Mi,+Vp = 0 ;  n- = +pi22r2+p+II,  at (7) 

v . v  = 0. (8) 

Thus, viscosity and compressibility are ignored. The total pressure n- includes 
the perturbation pressure, p ,  and a constant, IT, determined by the equilibrium 
boundary conditions a t  the interface and the ambient pressure. 
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If solutions to (7)  and (8) are assumed in the form Re @(r) expj(wt - mB - kz) ,  
( 7 )  and ( 8 )  require that for o + 2Q, 

r=D2@ + rD@ - @(m2 + r2k2A2) = 0, 

0, = j[wD@ - 2mQ(@/r)]/pw2A2. 

(9) 

where 42 = 1 - ( 2 1 ( 2 / ~ ) ~ ,  D( ) = d( )/dr, and 

(10) 

In  configuration A ,  the spacing (a )  is sufficiently small to warrant ignoring 
the dependence of 5 on the axial direction, x .  What variations exist in the inter- 
face position with x are quasi-static in nature in that the profile is essentially in- 
dependent of the dynamics. Thus, the balance of surface forces in this case is 
taken as independent of x ,  and represented by an average over the x dimension of 
the interface. As far as the mechanical motions are concerned, this means that 
k = 0, and the appropriate solution to (9) that is not singular at the origin is, 

@ ( r )  = pR(w2 + 2oQ)  c(r/R)m/m. (11) 

In  the case of figure 2 (b), the interfacial axial wavelengths 2 r / k  are also long 
compared to the plate spacing, s, but it is appropriate to include their effects. 
The non-singular solution to (9) for this case is 

with Jm the mth order Bessel function of first kind. 
The constants in these last two solutions have been adjusted so that O,(r), as 

given by (lo), satisfies the condition @(R) = j w c .  Finally, the complex amplitude 
of the total pressure n- evaluated a t  the deformed position of the interface follows 
from (7 )  as 

where @ is given by (1 1)  or (12), whichever case is under consideration. 

Electrical stress-displacement relations 
In  the limit where self-field effects dominate, a simple model gives a surprisingly 
good description of the electrical surface force density. As the interface passes 
from the region between the electrodes, where the electric field intensity is 
E,, to the field-free region beyond, the surface force density of ( 2 )  varies from a 
maximum of ( E  - q,) Ei/2  t o  zero, as shown in figure 3. The field decay is repre- 
sented to a good approximation by the piecewise continuous model of figure 3, 
which represents the variation as being linear over the range R - s / 2  < 5 < R + &s, 
and constant elsewhere (Melcher, Guttman & Hurwitz 1968; Melcher, Hurwitz, 
Fax & Blutt 1969; Guttman 1967). 

The variation of T, shown in figure 3 pertains to the case in which the field is 
imposed by electrodes, each with an edge at  r = R. Thus it applies directly to 
configuration B, figure 2 (b) ,  and for small perturbations from equilibrium 
(It1 < is), the required dependence of ?e on cis  simply 
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plane F Bottom electrode 
FIGURE 3. Electric surface force density T' experienced by the interface 

as a function of radial position, 5. 

In this latter case (figure 2 (a ) ) ,  the surface force density represents an average 
over the axial length; the plane motion model ignores the axial dependence of the 
interface position. 

Eflects of surface tension 
The influence of surface tension is included as a correction, rather than a first- 
order effect. In  general, i t  depends on the manner in which the liquid wets the 
electrodes. If the interface was composed simply of a circular cylindrical column, 
with no electrodes to which to attach, the additional surface force density would 
be (Lamb 1932, p. 473) 

where T is the surface tension. 
In configuration A of figure 2 ,  the interface is observed to remain attached 

to the edge of the upper electrode. Transverse motions are accommodated be- 
cause the lower electrode allows the interface to slosh unobstructed in and out. 
In  static equilibrium, the interface assumes a profile varying from that sketched 
in figure 2 (a)  to a nearly perpendicular straight line, depending on the amount of 
fluid oriented by the field, and on the field strength relative to that of gravity. 
With the vertical equilibrium, motions lead to a profile that is somewhat sinu- 
soidal, with wavelength 4a. Thus, the approximation is made that 

f (0 ,  x ,  t )  = f (0 ,  t )  sin (2zx/Na),  (16) 

where N, the number of quarter wavelengths in the axial distance a ,  is 4. With 
the interface extending out from under the upper electrode, its extent between 
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However, with configuration A ,  the lower electrode extends beyond the fringing 
field region and assumes the position of the symmetry plane shown in figure 3. 
It follows that in the case of figure 2 (a ) ,  the appropriate dependence of T, is 
given bv (141 with s --f 2a. 
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electrodes exceeds a, and it is expected that N in (16) should be taken as some- 
what larger than 4. Thus, the z-dependence in (15) is fixed by making k in (3) 
2n/Na. Substitution of (3) into (15) then gives 

ps = T[1-m2-($) 2 (;) R 2  ] [ / R 2  

for configuration A .  
In  the case of figure 2 ( b ) ,  it is expected that, as the interface moves past the 

edges of the electrodes, initially it tends to attach, but finally breaks away. 
Thus, there is an effective surface force density due to surface tension which has 
a non-linear dependence on csimilar to that of T,; somewhat as depicted by figure 
3. Here, interest is confined to the secondary effects of surface tension in experi- 
ments having the configuration of figure 2 (a) ,  and the effects of surface tension 
are ignored in the case of figure 2 (b). 

Dispersion equations 
Radial interfacial force equilibrium as required by (6) can now be expressed 
with terms linear in the arbitrary amplitude c. The resulting expressions, which 
are homogeneous in 5, are in general satisfied only if the coefficients of g vanish. 
Thus, (6), (ll),  (13), and ( l a ) ,  (withs -+ 2a) and (17) give the dispersionequation 
for Configuration A : 

Of course, conservation of mass requires that m + 0. 

configuration B.  
Similarly, (6), (12), (13) and (14) combine to give the dispersion equation for 

(19) D J ~ ,  m, k) + [ ~ C P R  - 
pw2J, ( jkRA)  where Dp(w,m, k) = 

- 2mQ J, ( j kRA)  + jk a JL ( j kRA)  
wA2R 

The main complication of the rotation, the dependence of A [defined with (9)] 
on w ,  is familiar from many problems concerned with inertial oscillations (Habip 
1967; Chandrasekhar 1961; Pultz 1959; Phillips, 1960; Bretherton et aZ. 1966). 

3. Azimuthal modes (configuration A) 
Natural frequencies 

The purely azimuthal modes represented by (1  8) are conveniently studied 
because of the simple quadratic dependence of the rotation on w. With the 
frequency of the mth mode without rotation defined as 

(18) shows that the natural frequencies exhibit a splitting characteristic of the 
effect of rotation 

w = - Q + [ i 2 2 ( l - m ) + u L ] 4  ( m =  1 ,2 ,3  ,... ). (21) 
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Experimental observations of similar but purely hydrodynamic modes obtained 
on the interface between a cylindrical column of air and a surrounding, rotating 
liquid (Philips 1960) have been successfully correlated with a dispersion equation 
having a form similar to (21).  In  that case, with the heavier liquid on the outside, 
rotation tended to augment the stability. 

As must be expected for an equilibrium like that considered here, one that 
places the heavy liquid ‘on top of’ the lighter, surrounding gas, the effect of the 
rotation on all but the m = 1 mode is to produce instability. Further, this tend- 
ency for instability caused by rotational forces is in competition with the forces 
that contribute to urn, which, in the absence of surface tension, is in direct pro- 
portion t o  the imposed electric field intensity. 

Instability 
For purposes of determining the critical field intensity E, for incipience of in- 
stability, as well as the critical mode number m, at which the instability first 
occurs as E, is reduced, it is convenient to write the dispersion equation (21)  in 

(22) 
the form - 

o = ( w / Q )  = - 1 [ i+m(r -  i ) + m a ( p + d -  i)p, 

Instability sets in as the bracketed term of (22)  goes to zero. As this occurs, 
W = - 1 and the equilibrium is overstable in the rotating frame of reference. 

If R >> a, then p 9 1, and from (22)  the condition of marginal instability is 

r = r(E,) = i - ( i /m) -a(m2+p) .  (23) 

Consider that the angular velocity Q has been established at  a particular value and 
E, set to make the equilibrium stable. Then, as E, is decreased through the critical 
value E,, such that I’ = I?,, the electric perturbation surface force density can 
no longer balance the perturbation rotational forces and the equilibrium becomes 
unstable. 

The maximum of (23) is Fc, and occurs at  the critical mode number m,. Because 
of the closed circular nature of the surface, the mode number m must be an integer, 
thus 

m., = the closest integer to (2a)-9. 

However, in most situations, m is large and the influence of its discrete nature on 
the conditions for instability can be ignored. Substitution of (24)  into (23) then 
yields the critical parameter Po and hence the critical electric field intensity E, : 

(24) 

where G = 29+ (3) 3 -N 1-9. For E, > E, the system is stable. 
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4. Axial modes (configuration B) 
Natural frequencies 

By contrast with the two-dimensional (azimuthal) modes considered in 5 3, 
three-dimensional modes are represented by an eigenvalue equation ( 19), which 
is difficult to deal with. It assumes the normalized form 

4A2([1 - A2] [ T m,/(l- A2) +jICARJ~(jkAR)/J,(jICAR)]~-l = r'- 1, (26) 

where now I? = (e - E,) E32spWR and 

W = 2[1 -A2]-&. (27) 

The upper and lower signs in (26) and (27) are to be identified with each other, and 
will be referred to as branches 1 and 2 ,  respectively. 

FIGURE 4. Graphic representation of the roots to (26) which are either purely imaginary 
or real. Branches 1 and 2 are degenerate, so that each solution for Az represents two eigen- 
frequencies; kR = 0.5 and m = 0. The corresponding eigenfrequencies are given in figure 5.  

The m = 0 modes represent a special case, in that the branches of (26) are then 
identical. For real values of A2, solutions to (26) are conveniently pictured by 
plotting the left side of (26) as a function of A2. Roots are those values of the 
abscissa in which the plot has the ordinate I? - 1. As an example, figure 4 shows 
the case where ICR = 0.5. Each root corresponds to two eigenfrequencies, as given 
by (27 ) ,  hence to two modes. 

Most of the modes can be associated with inertial oscillations such as would 
exist in the bulk of the liquid even if the interface was constrained by a rigid wall. 
These are identified as loj in figure 4, and as the electric field is made very large 
(I? + co), they have eigenfrequencies that increase asymptotically, approaching 
those for the case of inertial oscillations in a rigid circular container. The remain- 
ing modes are denoted by Coj to indicate that they are at  least associated with 
electrohydrodynamic centrifugal waves of the type discussed in 5 3. By contrast 
with the inertial modes, the eigenfrequencies of the modes C,,, approach rt co 
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FIGURE 5 .  Eigenfrequencies for m = 0 modes with k R  = 0.5 as a function of the normal- 
ized applied electric field intensity. For r < 1, the centrifugal modes C,, and C,, display a 
purely exponential growth, with the growth rate going to zero a t  I? -+ 0. The frequencies 
of mode pairs are negative. -, ReG;---- , ImG. 

FIGURE 6. Long-wave limit of (26) for m = 2 modes. This characterizes those modes 
m > 1 and allows an identification of the eigenfrequencies in terms of the branches of 
(26 )  in the limit where the inertial oscillations are suppressed ( kR  + 0). -.-.-, branch 1 ; 

, branch 2. 
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as P + co. For I’ < 1, two additional modes, Co3,4, appear for real values of A2 > 0 
and from (27) it is clear that these are unstable. The positive eigenfrequencies are 
shown in figure 5 for the case of figure 4. 

As is typical of inertial oscillations, eigenfrequencies approach zero with 
increasing mode number. Hence there are an infinite number of modes having 
frequencies within some neighbourhood of zero. As I? -+ 1, the unstable modes 
CO3,, have growth rates that approach zero; these modes join the infinite number 
having frequencies in the neighbourhood of w = 0. 

In  the long-wave limit (kR-+ 0) ,  the modes m + 0 approach those discussed in 
5 3 (with I? suitably redefined by identifying s + 2 a). It is helpful in understanding 
the finite kR case to consider this long-wave limit in terms of a plot analogous to 
that of figure 4. As kR -+ 0, the m = 2 modes are represented by the plot of figure 
6. Now, the branches of (26) are not degenerate. For < 1, branch 2 accounts for 
both modes C,, and C,,, while for I’ > 1, C,, is given as a root of branch 1. Combin- 
ing the long-wave limit of (26) with (27) gives the eigenfrequencies of the mth 
modes C, , as 

The eigenfrequencies illustrated in figure 7 are drawn for the m = 2 modes using 
figure 6, but can also be obtained from (28) which holds for any mode m =!= 0 
in the limit kR + 0. Note that overstability results as I? is decreased below 
0.5, with the roots joining at B in figures 6 and 7, and then represented by com- 
plex values of A2. In  the long-wave limit these complex values of A2 are easily 
found because the Bessel’s functions can be represented by polynomials. But, 
with kR finite, the problem of finding modes with A2 complex requires solving (26) 
with Bessel’s functions of a complex argument. Fortunately, most of the modes 
are represented by roots of (26) having real values of A2, with graphical solutions 
illustrated in figure 8 for the case ICR = 0-5. 

The effect of a finite ICR is to make evident an infinite set of inertial modes I& 
which in the characteristic manner decrease in frequency magnitude as the mode 
number increases. As for the m = 0 modes, the effect of raising the electric 
field intensity is to increase the inertial oscillation frequencies. The frequencies 
of the first two inertial modes are shown in figure 9 as functions of the normalized 
electric pressure, I’. 

Although solutions labelled C,,,-, are denoted by a C for centrifugal modes, 
examination shows that these four have properties of both the inertial and the 
centrifugal modes; they are of a hybrid character. With I? = 0, modes C,, and 
C,, are oscillatory, while modes C,, and C,, combine to give overstabilities and 
underdamped modes. As I? is raised, this latter pair of modes join at  B in figure 8 
and become oscillatory. However, with a further increase in r, point A is reached 
and modes C,, and C24 join to become underdamped and overstable. Solution for 
the eigenfrequencies of these last two modes beyond this level of r requires 
numerical solution of (26) with A,, and hence the frequency, complex. Of course, 
A, is also complex for the C,, modes with below point B, but small argument 
approximations of the Bessel’s functions make it possible to find these roots 
analytically. 

The frequencies for the four C modes are shown in figure 9. Note that the over- 

w = - 1 f [1 +m(I?- l)]k (28) 
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I3 1 
I 

0 

FIQURE 7. Eigenfrequencies for modes m =!= 0, kR 3 0. The particular numbers are for the - - 
m = 2 modes, but the plot characterizes higher order modes. -, u,; - - - - f "i. 

FIGURE 8. Graphic representation of roots of (26) which are either purely real or imaginary. 
kR = 0.5 and m = 2. Modes C,, and C,, switch from overstable to stable at B as I' is 
raised, while G,, and C,, become overstable a t  A as I' is raised still further. -.-.-.-, 
branch 1; - , branch 2. 
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stability caused by raising I' beyond point A has a growth rate, and oscillation 
rate that approaches zero as I' -+ 1. As for the unstable m = 0 modes, this pair 
joins the infinite number in the neighbourhood of zero frequency as I' -+ 1. 

As I' is increased to infinity, the modes C,, and C,, have eigenfrequency magni- 
tudes that approach infinity, as is expected for the inertial modes as the electro- 
hydrodynamic walls become infinitely stiff. Note, however, that the mode C,, 

IS 
I 

3 0  

2.0 

1.0 

0 

- 1.0 

r 
FIGURE 9. Eigenfrequencies as a function of normalized electric field intensity, showing 
coupling of inertial oscillations and electrohydrodynamic centrifugal waves to produce 
overstability at A.  Points A and B are to be identified with the respective points in figure 8. 

remains oscillatory throughout the full range of I?; for -+ 0 it has the character 
of an inertial oscillation, while for I' -+ co, it assumes the properties of a centri- 
fugal mode. 

Although no claim is made here that all modes and all possible wavelengths 
2nIlcR have been examined, it appears that a sufficient condition for stability 
of all modes is I? > 1. Certainly, if I' < 1, there are modes of instability. 
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5. Experiments 
Apparatus 

In  order to observe incipient instability and normal mode oscillations for con- 
figuration A (figure 2 (a)), the rotating tank and drive assembly shown in figure 10 
is used. The two electrodes are brass and the upper disk is bevelled on its lower 
surface 0.7 of a degree from the centre to the outer rim, to minimize the collection 

Lower electrode 

u 

I Fluid 
trap 

Speaker 
FIGURE 10. Apparatus for observation of oscillations and instability with configuration A 
(figure Z ( a ) ) .  The upper electrode radius R = 8.5 em and electrode spacing cz = 5 mm or 
7 mm. The rotational speed ranges from f,, = 0 - 100 rpm while the applied potential is 
0-24 kV at 400 Hz. 

of bubbles in the centre region. The electrodes are contained in a Plexiglas tank 
which is mounted on a shroud and shaft assembly. A dc motor is geared to the 
shaft by means of two gear-belt reduction units, and the angular velocity is 
measured with a magneto-tachometer, The speed of the motor is varied from 
zero to 100rpm by means of two rheostats. One of the rheostats is driven by 
a slow-speed ac motor and gear box for the purpose of bringing the rotating tank 
up to the desired velocity in a gradual and continuous manner. 

The tank and drive assembly, the pressure transducer system, and the high- 
voltage supply are the essential components. The transducer is designed to 
excite the normal modes in the rotating frame of reference. A tube is introduced 
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through the bottom electrode into the region between the upper and lower disk 
electrodes, and is connected to a fluid trap, as shown. The trap likewise is con- 
nected to the hollow, vapour-filled shaft which supports the tank assembly. 

At the lower end of the shaft is a rubber bellows assembly which has a thin 
polished disk cemented to the bottom. The bellows is driven with a loud speaker- 
amplifier-oscillator system by means of a plunger in contact with the polished 

Mass density p = 1.56 x lo3 kg/m 
Permittivity E = 2.416, 
Surface tension T = 1.9 x nt/m 
Relaxation time T~ FZ 10sec 
Viscosity p % 0.6 cp 

TABLE 1. Fluid parameters for Freon 113 

disk. Although the loudspeaker and plunger are fixed, the bellows assembly is 
free to rotate. When the transducer system is in operation, the upper connecting 
tubing is filled with liquid, and the remaining tubing shaft, and bellows are filled 
with vapour. As the tank rotates and the loudspeaker cone moves in and out with 
a frequency f, the plunger drives the rotating bellows in the axial direction. Thus, 
the rotating fluid is pulsed in the rotating frame of reference with the frequency, 
f, of the oscillator. 

The high voltage V, necessary to maintain the electric field intensity E, = G/a 
between the electrodes is transmitted through a pair of slip rings and brushes 
mounted on top of the rotating tank. Fields of alternating polarity which have 
a frequency much greater than the reciprocal relaxation time are used to avoid 
effects from free charges that can arise in the fluid through relaxation phenomena. 
Also, fluid interactions at the liquid-gas interface involving the second harmonic 
of the imposed fields are minimized by making the frequency high; 400 Hz is used. 
In  computing the electrical force, the ac field is considered as a dc field having the 
same r.m.s. value. 

For the study of oscillations and dynamic instability, it  is essential that the 
liquid be relatively inviscid. Freon 113 is used with properties summarized in 
Table 1 (Du Font Bulletin B-2 1966). 

Instability 
The instability experiments consist of measuring the critical voltage V,  = E,a 
of impending instability as a function of the rotational speed f, = Q/2n for two 
values of electrode separation; a = 5 mm and a = 7 mm. 

The bottom electrode is covered with a layer of Freon 113. Then, with the 
voltage applied, the portion of the liquid under the top disk electrode becomes 
unstable and bridges to the disk (due to self-field effects and the perpendicular 
field as discussed in connexion with figure 1 (a)).  Thus, the liquid forms a circular 
cylinder with an essentially vertical wall. The power supply voltage V, is in- 
creased to its maximum value of 24kV to reinforce the fluid ‘wall’. The tank 

47 Fluid Mech. 38 
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assembly is set in motion at a very low rotational speed, and then gradually 
brought up to desired speed in about 3 to 4 minutes. 

When the tank has been rotating at the desired speed for a few minutes, V, 
is reduced gradually until the rotating fluid wall becomes unstable. As 
observed visually, the fluid bulges out slightly and then the majority of the 
fluid between the electrodes is ejected outward to the walls of the Plexiglas 
tank. Occasionally, small amounts of fluid will be expelled from the rotating 
fluid wall at a voltage above that (8) at which the majority of the fluid is lost. 
For voltages between this ‘premature’ voltage and V ,  the fluid is observed to be 
more nearly vertical. 

I I I I I I I I 

0 10 20 30 40 50 60 70 80 90 100 

f, (rpm) 
FIGURE 11. Critical voltage V ,  for incipient overstability as a function of the rotational 
speed f+ with a = 5 mm. The theoretical curves show the effect of surface tension, T, on 
the prediction, with N a function of the wetting. Theory: -, N = 4; ---, 
N =  6 ;  , . . . .  ., T = 0. Experiment: 0 .  

The measurements, for a = 5 mm, are presented in figure 11 with confidence 
bounds based on several repeated measurements. Similar results are found for 
a = 7 mm (Calvert 1968). Three lines indicate the predictions of (25)  with sur- 
face tension effects included to various degrees. The agreement between experi- 
ment and theory is better than would be expected from the approximate nature 
of the simple concentrated field gradient and surface tension models. The total 
effect of surface tension is even less at  the wider spacing of a = 7 mm and can be 
ignored for practical purposes at  high values of the rotational velocities. 

Normal modes 
Normal mode frequencies are exhibited as the resonance frequencies of the 
driven fluid. These resonances are measured for the m = 1,2, and 3 modes as 
functions of the applied voltage for three values of rotational speed fr. The data 
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are presented in figure 12 for a = 5 mm, with a similar result obtained for a = 7 mm 
(Calvert 1968). 

Visual observations are used to identify the modes and to detect the resonances. 
The voltage is set at a constant value, and the frequency is increased until the 
first mode appears. This is detected in the laboratory frame by observing an 

V,  (kV-r.m.s.) 
FIGURE 12. Resonance frequencies as viewed in the rotating frame for normal modes as a 
function of the voltage with the Jotational frequencyf, as a parmeter. Electrode spacing 
a = 5 mm. With f, = 50 rpm, higher-order modes are unstable to the left of the point 
where the curves axe broken off. 
(a) m = 1 mode. Experiment: A, f, = Orpm; O,fr  = 30rpm; n,f, = 50rpm. Theory: 

(b )  m = 2 mode. Experiment: A, f, = Orpm, 0, f, = 30rpm; U, f, = 5Orpm. 

(c) wi = 3mode. Experiment: A, f, = Orpm; 0, f, = 30 rpm; 0, f, = 50rpm. 

,f, = Orpm; --- , f, = 30 rpm; - * . . . - , f, = 50 rpm. 

Theory; - , f r=Orpm;--- , f r= 3 0 r p m ; - . - - * .  , f, = 50 rpm. 

Theory : - , f r  = Orpm; --- , f, = 30 rpm; - - . * - * , f, = 50 rpm. 

envelope of uniform ‘wobbles’ on the fluid surface. As the frequency is tuned 
past resonance, the envelope subsides. When the frequency is further increased, 
the second mode appears. 

The mode numbers (m) are verified in the laboratory frame of reference by 
viewing the fluid surface through the side of the tank, where the surface is 
observed to move in and out at  a rate slow enough to measure with a stopwatch. 
This corresponds to a frequency fi which is related to the mode number m, the 

47-2 
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rotational speed f r ,  and the rotating frame exciting frequency f = w/2n by the 
relation 

lfil = If1 +mlfrt. (29) 
Measurements on the lower resonance frequency of a mode pair are made 

using a similar technique. Low frequency data are limited due to amplifier 
capabilities and the difficulty of detection. However, the three lower modes 
are found and identified for two values of V, with fr = 30rpm. It is noted from 
(21) that the lower frequency is negative for sufficiently large E,  and for this 
case (29) becomes 

For experiments conducted at a speed f r  = 50rpm, no reliable data are obtained 
for the lower frequencies due to the limitations on the exciting equipment. 

The predictions based on (21) are included with figure 12. The agreement 
between experiment and observation lends further support to the simple quasi- 
two-dimensional model. For the m = 1 and m = 2 modes, the high frequency 
shift predictions given by (21) are found to be in excellent agreement. The 
m = 3 mode shifts are experimentally found to be somewhat greater than pre- 
dicted. 

(30) lhl = If I -mlfrl. 

Summary and further remarks 
Although the addition of electric stresses to systems of rotating fluids seems 

at first a complication, at least for the azimuthal modes which characterize the 
dynamics of configuration A ,  the dielectrophoretic interaction makes possible a 
class of centrifugal modes that can be meaningfully represented by a simple 
model. The model is certainly simpler than that investigated by Phillips (1960) 
for similar ordinary centrifugal waves. This can be traced to the fact that the 
equilibrium is cylindrical rather than annular; the electromechanical wall makes 
possible modes that can be described by a single basic solution for the radial 
dependence of velocity. Also, self-field effects can be ignored and this reduces the 
representation of the electric stresses to a simple matter. The experiments sup- 
port the simple model; it seems clear that the essential aspects of the dynamics 
in configuration A are well represented. Experimental work is called for to study 
configuration B, but it is not clear how effects of gravity can be removed in this 
case. 

This work was supported by NASA Grant NGL-22-009-014. 
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